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The compression wave generated by a high-speed train entering a tunnel is studied
theoretically and experimentally. It is shown that the pressure rise across the wavefront
is given approximately by
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where ρo, U, M, Ao and A respectively denote the mean air density, train speed,
train Mach number, and the cross-sectional areas of the train and the uniform section
of the tunnel. A monopole source representing the displacement of air by the train is
responsible for the main pressure rise across the wave, but second-order dipole sources
must also be invoked to render theoretical predictions compatible with experiment.
The principal dipole is produced by the compression wave drag acting on the nose
of the train. A second dipole of comparable strength, but probably less significant in
practice, is attributed to ‘vortex sound’ sources in the shear layers of the back-flow
out of the tunnel of the air displaced by the train.

Experiments are performed that confirm the efficacy of an ‘optimally flared’ portal
whose cross-sectional area S(x) varies according to the formula
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where x is distance increasing negatively into the tunnel, ` is the prescribed length of
the flared section, and AE is the tunnel entrance cross-sectional area, given by

AE

A =

(
`

2R

)2/3
[(

1 +

√
1−

(
2R

3
√

3`

)2
)1/3

+

(
1−

√
1−

(
2R

3
√

3`

)2
)1/3]2

, R =

√A
π
.

This portal is predicted theoretically to cause the pressure to increase linearly with
distance across a compression wavefront of thickness ∼ `/M, which is very much
larger than in the absence of flaring. The increased wave thickness and linear pressure
variation counteract the effect of nonlinear steepening of the wave in a long tunnel,
and tend to suppress the environmentally harmful ‘micro-pressure wave’ radiated
from the far end of the tunnel when the compression wave arrives. Our experiments
are conducted at model scale using axisymmetric ‘trains’ projected at U ∼ 300 k.p.h.
(M ≈ 0.25) along the axis of a cylindrical tunnel fitted with a flared portal. The
blockage Ao/A = 0.2, which is comparable to the larger values encountered in
high-speed rail operations.
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1. Introduction
A high-speed train entering a tunnel compresses the stationary air immediately

in front of it, causing most of the displaced air to flow over the train and out
of the tunnel portal. The pressure rise propagates into the tunnel (ahead of the
train) at the speed of sound as a compression wave whose amplitude is typically
1–3% of atmospheric pressure when the train Mach number M exceeds about 0.2
(∼ 250 k.p.h.) (figure 1). The initial shape of the wavefront profile depends critically
on the geometry of the tunnel entrance portal and on the ‘blockage’, i.e. the ratio
Ao/A of the train cross-sectional area Ao to the cross-sectional area A of the
uniform section of the tunnel (Hara 1961; Hara et al. 1968; Ozawa, Tsukamoto &
Maeda 1976; Ozawa & Maeda 1988; Ozawa et al. 1991; Ozawa 1979; Woods & Pope
1976; Ogawa & Fujii 1994, 1997; Howe 1998a, b, 1999a). The pressure rise across
the wavefront ∼ ρoU

2Ao/A, where ρo is the mean air density and U denotes train
speed; for a uniform tunnel of constant diameter D the wavefront thickness is of order
D/M 6 5D.

A rarefaction wave is generated as the tail of the train enters the tunnel. In
a long tunnel multiple reflections of the waves from either end, and from tunnel
‘discontinuities’ such as changes in cross-sectional area, air shafts, side branches,
etc., and also from the nose and tail of the train, produce complicated interference
patterns with the possibility of locally intense pressure transients. The rapidly varying
changes in pressure can cause discomfort to passengers in unsealed rail cars and to
maintenance personnel in the tunnel. The reflection of the compression wave from the
distant tunnel exit is accompanied by the emission from the tunnel of a pressure pulse
(the micro-pressure wave of figure 1). The strength of this pulse is proportional to
the steepness of the compression wavefront at the exit; for tunnels longer than about
3 km with modern concrete slab tracks (offering little dissipation to the propagating
wave) nonlinear steepening of the compression wavefront as it propagates along the
tunnel can cause the micro-pressure wave amplitude to be as large as 50 Pa near the
exit. This is comparable to the sonic boom overpressure from a supersonic aircraft,
and frequently rattles windows of neighbouring buildings and is responsible for much
environmental annoyance. Nonlinear steepening in a long tunnel tends to be inhibited
by relaxation processes if the initial thickness of the compression wave is sufficiently
large (Ozawa et al. 1991; Maeda et al. 1993; Iida et al. 1996). Considerable efforts
have therefore been made (many of which are summarized by Ozawa et al 1991)
to enhance the initial wave thickness by judicious design of the train nose profile
and tunnel portal. This problem must be resolved if the full benefits of sustained
high-speed travel are to be realized; the solution is made more desirable by the
introduction of 500 k.p.h. Maglev trains on new routes that typically require up to
50% of a journey to be within a tunnel.

Large increases in the initial wave thickness are currently obtained by the installa-
tion of a tunnel entrance ‘hood’, that can extend as far as 50 m ahead of the tunnel
entrance. For example, a fivefold increase in wave thickness is achieved by the 49 m
long hood at the eastern entrance to the Ohirayama tunnel in Japan (Ozawa et al.
1991). The compression wave begins to form as the train enters the hood: the wave
thickness is increased by venting high-pressure air through ‘windows’ in the walls of
the hood. The optimum distribution of these windows is determined from scale model
tests (of the type described later in this paper), usually involving a ‘tunnel’ consisting
of a thin-walled, circular cylindrical tube, and axisymmetric ‘trains’ projected along a
very tight guide-wire extending along the tube axis.
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Figure 1. Schematic illustration of a train entering a tunnel, showing the compression wave, the
micro-pressure wave, and the shear layers of the exit flow from the tunnel entrance portal.

However, entrance hoods tend to be unsightly and alternative tunnel portal modifi-
cations have therefore been considered. It has been demonstrated numerically by Fox
& Vardy (1973) and experimentally by Ozawa et al. (1976) and Ozawa (1979) that
flaring of the tunnel portal could lead to large increases in the initial compression
wave thickness. The most desirable form for the compression wave profile is one
in which the pressure increases linearly with distance across the wavefront, with a
constant pressure gradient that is as small as practicable. This would not only delay
the onset of a nonlinearly steepened wavefront, but also would inhibit the formation
of high-frequency ‘shocklets’ on an otherwise extended, but roughened wavefront. The
cross-sectional area of an optimally flared tunnel portal must vary in an appropriate
manner with distance from the tunnel inlet plane; the constant pressure gradient
would then equal M∆p/`, where ∆p is the overall pressure rise (which is independent
of portal geometry) and ` is the length of the flared section of the tunnel. An ana-
lytical expression for this optimal flaring was derived by Howe (1999b) from a linear
theory of compression wave formation, which was based on the assumption that the
blockage Ao/A is small.

Linear theory predictions for a non-flared portal are found to be in good agreement
with model scale experiments provided Ao/A does not exceed about 0.12 (Howe
1999a). However, high-speed rail operations in practice involve Ao/A as large 0.2 or
slightly higher, and it is therefore important to seek an extension of the linear theory
to cover such cases, and to validate predictions by comparison with experiment. These
objectives are the subject of this paper.

The equation of vortex sound generation in an homentropic fluid (Howe 1998a)
is applied to determine a second-order approximation (in powers of Ao/A) to the
theory of compression wave formation. Linear theory replaces the train by a system of
monopole sources distributed over the nose and tail sections, where the cross-sectional
area varies; these sources account for most of the pressure rise across the wavefront.
The most important second-order sources consist of dipoles orientated parallel to the
train and distributed over the nose and tail, with strength determined by the surface
pressure; a somewhat smaller contribution is also made by ‘vortex dipoles’ in the free
shear layer of the air ejected from the tunnel portal by the entering train. Additional
vortex sources occur in the boundary layer on the moving train, and also possibly in
regions of flow separation; but these are not easily quantified because they depend
critically on train nose geometry. A principal conclusion of our analysis is that the
linear-theory, optimally flared portal remains optimal to second order in the blockage
Ao/A. This prediction is confirmed by the model scale tests described in this paper
at train Mach numbers ∼ 0.25 (∼ 300 k.p.h.) and Ao/A = 0.2.
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Figure 2. (a) Train entering tunnel. (b) Dynamically equivalent configuration consisting of the train
and its image in the ground plane entering a flanged duct formed by the reflection of the tunnel
walls in the ground plane.

The second-order theory of compression wave formation and its application to the
flared portal are discussed in §§ 2 and 3. A detailed description of the model scale
experiments and measurement procedure is given in § 4. However, to avoid interruption
of the natural flow of the discussion, it is convenient to make forward references in
§§ 2, 3 to the results of these measurements, and to include in these sections a general
discussion of the comparison of theory and experiment. Steady-state predictions of
the second-order theory (which become relevant after the nose of the train has passed
into the tunnel) are compared in § 2 with Hara’s gas dynamic theory of the overall
pressure rise across the wavefront (Hara 1961; Hara et al. 1968). This comparison
isolates that part of the Hara prediction formula that corresponds to the pressure rise
produced by the free-shear vortex dipoles, which are often not relevant in practice
because their influence is not usually felt until such times that additional, extraneous
pressure rises attributable to boundary layer growth (and perhaps separation) on the
train and interior tunnel wall (both neglected in Hara’s gas dynamic formula) are
also important.

2. Theory of compression wave generation
2.1. The governing equations

The dynamics of the formation of the compression wave of figure 1 by an entering
train are equivalent to those of the simpler problem depicted in figure 2(a), in which
the tunnel is replaced by a semi-infinite duct. To fix ideas we shall consider first a
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tunnel of uniform cross-sectional areaA. Let the train be travelling at constant speed
U in the negative x-direction of the rectangular coordinates x = (x, y, z), where the
origin is at O at ground level in the entrance plane of the tunnel, with the x-axis
lying in the vertical plane of symmetry. The pressure, density and speed of sound in
the air are denoted respectively by p̄, ρ and c. They vary with position x and time t
within the tunnel, and their corresponding undisturbed values are po, ρo, co.

The cross-section of the train is assumed to become uniform with constant area
Ao at a distance L from the nose. The uniform maximum height of the train is h, and
the aspect ratio of the nose h/L is taken to be sufficiently small, and the train profile
sufficiently streamlined, to ensure that flow separation does not occur. In practice
the Mach number M = U/co does not exceed about 0.4, and the blockage Ao/A
is typically less than about 0.2. Heat transfer and frictional losses will be neglected
during the initial stages of wave formation. The air flow may then be regarded as
homentropic (so that ρ ≡ ρ(p̄)) and the compression wave can be calculated from
the corresponding equation describing the generation of sound in the presence of a
moving surface, which we take in the form (Howe 1975, 1998a)(

D

Dt
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D

Dt

)
− 1

ρ
∇ · (ρ∇)

)
B =

1

ρ
∇ · (ρω ∧ v), (2.1)

where v(x, t) is the velocity of the air, ω = ∇×v is the vorticity, and B =
∫

dp̄/ρ(p̄)+ 1
2
v2

is the total enthalpy. In the compression wave region ahead of the train, the air may
be regarded as linearly perturbed from its mean state, and

B ≈ p

ρo

, where p = p̄− po. (2.2)

According to this model the vorticity ω vanishes everywhere except within the outer
shear layer of the exit flow of the air displaced when the train enters the tunnel. In
the absence of the train B is constant throughout the fluid, and it may be assumed
that B = 0 prior to the arrival of the train.

When the actions of frictional ground forces are ignored during entry into the
tunnel, the problem of figure 2(a) is dynamically equivalent to calculating the pressure
wave generated by the train and the exit-flow vorticity together with their images in
the rigid ground plane (y = 0) within a duct consisting of the tunnel and its image
in the ground (figure 2b). This configuration closely resembles the arrangement used
in our experiments (§ 4), and the following discussion is framed in terms of this model.

Let f ≡ f(x+Ut, y, z) = 0 be a control surface S contained within the fluid that just
encloses the moving train, and suppose that f < 0 inside S (in the region occupied by
the train) and f > 0 in the exterior fluid region. The surface is fixed relative to the
train, and the influence of the train on its surroundings can be represented in terms
of a collection of monopole and dipole sources distributed on S. The representation
is derived by multiplying equation (2.1) by the Heaviside step function H ≡ H(f)
(= 0, 1 according as f 7 0) and rearranging (noting that Df/Dt = 0) to obtain(
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ρ
∇ · (Hρω ∧ v)

−(∇B + ω ∧ v) · ∇H− 1

ρ
∇· (ρB∇H). (2.3)

This equation is analogous to the differential form of the Ffowcs Williams–Hawkings
equation of the theory of aerodynamic sound (Ffowcs Williams & Hawkings 1969);
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HB ≡ B in the fluid (f > 0), and the two terms on the right-hand side involving
∇H respectively represent monopole and dipole sources distributed over the moving
surface f(x+Ut, y, z) = 0.

When frictional losses are neglected the momentum equation in the air reduces to
∂v/∂t = −∇B − ω ∧ v. The right-hand side of (2.3) can then be written

∂

∂t
(U · ∇H)− v · ∇∂H

∂t
− 1

ρ
∇ · (ρB∇H) +

1

ρ
∇ · (Hρω ∧ v), (2.4)

where U = (−U, 0, 0).
The first term in (2.4) is the linear-theory monopole source which was shown

by Howe (1998b) to account for most of the pressure rise across the compression
wavefront. The remaining sources represent effects that are second order in the
blockage Ao/A. When source terms of order M(Ao/A)2 or smaller are neglected,
it is permissible to approximate these sources by neglecting the compressibility of
the air over S and within the very low Mach number exterior flow from the tunnel
portal. If the nonlinear contributions of small changes in density and sound speed to
the propagation of the compression wave are also ignored, the general equation (2.3)
reduces to(
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}
+∇·(Hω ∧ v), (2.5)

where the relation ∂H(f)/∂t = −U · ∇H(f) has been used.

2.2. Linear theory

When the aspect ratio h/L of the train nose is small the slender body approximation
supplies the following representation for the monopole source in (2.5) (Howe 1998a, b):

∂

∂t
(U · ∇H) (x, t) ≈ ∂

∂t

(
U
∂AT

∂x
(x+Ut) δ(y) δ(z − zT)

)
. (2.6)

In this formula AT(x) is the cross-sectional area of the train at distance x from the
tip of the nose, which is assumed to cross the portal entrance plane at t = 0. In this
approximation the monopole is replaced by a line source distributed at ground level
along the centreline of the path of the train: −∞ < x < ∞, y = 0, z = zT, where
zT is the offset from the centreline of the tunnel. The source strength is proportional
to the rate at which the cross-section changes with distance along the train, and is
non-zero only in the vicinity of the train nose (and also the tail).

The corresponding approximation p1, say, to the compression wave is found by
introducing a Green’s function G(x, x′, t − τ) which has vanishing normal derivative
∂G/∂x′n on the tunnel walls, and satisfies(

1

c2
o

∂2

∂τ2
− ∇′2

)
G = δ(x− x′) δ(t− τ), G = 0 for τ > t, (2.7)

where ∇′2 is the Laplacian with respect to x′ (Morse & Feshbach 1953). G can be
determined in closed form when the tunnel consists of a semi-infinite, thin-walled,
unflanged cylinder of circular cross-section (Howe 1998a). In all practical cases,
however, the thickness of the compression wavefront is much larger than the tunnel
diameter, and G(x, x′; t − τ) can then be approximated by the compact Green’s
function. When the observation point x lies within the tunnel ahead of the train this
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is given by (Howe 1998b)

G(x, x′; t− τ) ≈ co

2A
{

H

(
t− τ− |ϕ

∗(x)− ϕ∗(x′)|
co

)
−H

(
t− τ+

ϕ∗(x) + ϕ∗(x′)
co

)}
,

(2.8)

where ϕ∗(x) is the velocity potential of a hypothetical incompressible flow out of the
tunnel portal; ϕ∗(x) ∼ O(

√A) in the vicinity of the portal, and is normalized such
that

ϕ∗(x) ≈ x− `′ as x→ −∞ inside the tunnel

≈ −A/4π|x| as |x| → ∞ outside the tunnel. (2.9)

This approximation for G is applicable for any tunnel whose interior cross-sectional
area is ultimately constant and equal toA. The length `′ ∼ √A is an ‘end-correction’
(Rayleigh 1926) whose value depends on the shape of the tunnel portal. The represen-
tation (2.8) is uniformly valid when regarded as a function of either x or x′ provided
at least one of these points lies within the tunnel at a distance from the portal large
compared to the tunnel diameter.

Thus, at points x within the tunnel, ahead of the train where B = p/ρo, the
linearized approximation p = p1 to the compression wave pressure is given by

p1 ≡ p1([t]) = ρo

∂

∂t

∫∫ ∞
−∞
U
∂AT

∂x′
(x′ +Uτ)G(x, x′, 0, zT; t− τ)dx′ dτ

=
ρoUco

2A
∫ ∞
−∞
{A′T(x′ −Mϕ∗(x′, 0, zT) +U[t]).

−A′T(x′ +Mϕ∗(x′, 0, zT) +U[t])}dx′, (2.10)

where the prime on AT denotes differentiation with respect to the argument, and
[t] = t+(x−`′)/co is the effective retarded time. Because nonlinear propagation terms
have been ignored, this approximation determines the initial form of the compression
wave profile, before the onset of nonlinear steepening. It is therefore applicable within
the region several tunnel diameters ahead of the train, during and just after tunnel
entry.

The main contributions to the integral (2.10) are from vicinities of the nose and tail
of the train, where the cross-sectional area AT is changing. The compression wave
is generated as the nose enters the tunnel, and may be calculated by temporarily
considering a train of semi-infinite length. During the formation of the wave, and in
the particular case in which the Mach number is small enough that terms ∼ O(M2)
are negligible, the term Mϕ∗ in the arguments of A′T in (2.10) is small, and we then
find

p1([t]) ≈ ρoU
2

A
∫ ∞
−∞

∂AT

∂x′
(x′ +U[t])

∂ϕ∗

∂x′
(x′, 0, zT)dx′, M2 � 1. (2.11)

After the nose has passed into the tunnel, ∂ϕ∗/∂x′ = 1 in the region occupied by
the nose, and (2.11) predicts the overall (linear theory) pressure rise to be ∆p1 ≈
ρoU

2Ao/A. But the linear-theory asymptotic pressure rise can also be calculated
exactly, with no restriction on Mach number, to be

∆p1 =
ρoU

2Ao

A(1−M2)
, (2.12)

because this is attained when ϕ∗(x′, 0, zT) ≈ x′ − `′ in (2.10).
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This formula for the overall pressure rise was given by Sugimoto (1994), who
approximated the train front by a monopole source but did not consider the details
of the compression wave front (see also Howe 1998c; Sugimoto & Ogawa 1998). It
implies that the approximation (2.11) can be extended to finite Mach numbers by
writing

p1([t]) ≈ ρoU
2

A(1−M2)

∫ ∞
−∞

∂AT

∂x′
(x′ +U[t])

∂ϕ∗

∂x′
(x′, 0, zT)dx′. (2.13)

This extrapolation of the linear theory to finite values of M was shown by Howe
(1998c) to be valid for M < 0.4 in the special case of an unflanged, circular cylindrical
tunnel. Further justification will be given below in § 3 for flared portals. According to
this formula the contribution from the monopole source, which is given exactly by the
left-hand side of (2.6), is always O(Ao/A). This conclusion is not a consequence of the
slender-body approximation. Indeed, without making the slender-body approximation
it is easily seen that (2.13) remains valid provided only that ∂ϕ∗/∂x′ is replaced by
its value averaged over the periphery of the train at x′, and this average is generally
negligibly different from the value of ∂ϕ∗/∂x′ on the axis of the train, except possibly
when the track offset zT is large, and then only at points close to the tunnel portal
edge.

Consider a circular cylindrical tunnel of radius R with a flanged entrance (figure
2b), and a train with an ellipsoidal nose profile obtained by rotating the curve
y = h

√
(x/L)(2− x/L), 0 < x < L about the x-axis, so that

AT (x)

Ao

=

{
(x/L)(2− (x/L)), 0 < x < L
1, x > L,

(2.14)

where Ao = πh2. This axisymmetric model is used in our experiments described in
§ 4, with

h = 2.235 cm, L = 11.18 cm. (2.15)

The tail of the model train has an identical ellipsoidal shape, and the overall length
of the train is 91.5 cm. The tunnel radius R = 5 cm (so that the blockage Ao/A ≈
0.2), the overall tunnel length is 10 m, and pressure measurements are made at
a distance |x| = 1 m from the tunnel entrance. The potential function ϕ∗(x) is
easily computed using a finite difference or boundary element integration scheme for
Laplace’s equation, and may be assumed to be known for the given tunnel geometry.

The measurements described in § 4 are for the simplest configuration in which the
tunnel and train are coaxial, so that zT = 0 in (2.13). The curve labelled p1 in figure
3 is the linear theory representation of the wavefront pressure profile calculated from
(2.13), (2.14) for U = 293 k.p.h. (M = 0.24), plotted against the non-dimensional
retarded position of the train U[t]/R (the nose of the train being assumed to enter
the tunnel at t = 0). The open triangles are measured values of the pressure. The
initial pressure rise occurs over a time interval ∼ 2R/U, corresponding to a wavefront
thickness 2R/M ∼ 41 cm. The rapid decrease in the measured pressure that occurs for
U[t]/R > 14 is produced by the rarefaction wave generated when the tail enters the
tunnel. The gradual increase in the experimental points after U[t]/R ∼ 2 is believed
to be caused by boundary layer growth on the train and tunnel walls, or possibly by
flow separation on either of these surfaces, and is discussed further in § 2.4.
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Figure 3. Illustrating different approximations for the compression wave pressure profile (in kPa) for
a train with the ellipsoidal nose profile (2.14) entering a flanged circular cylindrical tunnel of radius
R = 5 cm at U = 293 k.p.h.: the solid curves depict the linear theory pressure p1 (equation (2.13)),
the second-order approximation p1 + p2 of equation (2.20), and the exit-flow vorticity-generated
pressure pω (equation (2.25)); • • •, the simplified second-order approximation (2.22); - - - -, the net
predicted pressure p1 + p2 + pω calculated from (2.22) and (2.25); 444, the measured pressure at
a distance of 1 m from the tunnel entrance plane (§ 4).

2.3. The contributions from the surface dipoles

The second and third terms on the right of (2.5) are dipole sources distributed over
the surface of the train. In the slender-body approximation the first of these becomes

∇·(v U · ∇H) ≈ ∂

∂x

(
uxU

∂AT

∂x
(x+Ut) δ(y) δ(z − zT)

)
, (2.16)

where ux is the x-component of the air velocity v. The strength of the second dipole
is proportional to p/ρo + 1

2
v2. This can be estimated by means of a quasi-static

approximation, using Bernoulli’s equation and the linear-theory uniform pressure
p1(t) just ahead of the train, to be given by

p

ρo

+ 1
2
v2 ≈ p1(t)

ρo

− uxU, (2.17)

so that in the slender-body approximation

−∇·
{(

p

ρo

+ 1
2
v2

)
∇H

}
≈ ∂

∂x

{(
p1(t)

ρo

− uxU
)
∂AT

∂x
(x+Ut) δ(y) δ(z − zT)

}
.

(2.18)

Combining (2.16) and (2.18), we obtain the

net surface dipole ≈ ∂

∂x

(
p1(t)

ρo

∂AT

∂x
(x+Ut) δ(y) δ(z − zT)

)
. (2.19)

Hence, using the Green’s function (2.8) and neglecting terms of order M(Ao/A)2

and smaller, the surface dipole contribution p2, say, to the compression wave pressure
is found to be given by

p2 ≡ p2([t]) ≈ p1([t])

A
∫ ∞
−∞

∂AT

∂x′
(x′ +U[t])

∂ϕ∗

∂x′
(x′, 0, zT)dx′. (2.20)

This yields a component of order ρoU
2(Ao/A)2 to the overall pressure rise ∆p across

the compression wavefront.
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The solid curve labelled p1 + p2 in figure 3 is the second-order approximation
p = p1 + p2 for the experimental conditions of § 2.2, which exhibits a considerably
improved agreement with experiment relative to the approximation p1. A further
simplification can be introduced by noting that p2 is initially very small, which
suggests that the integral in (2.20) may be approximated by its value for large
retarded time (when ∂ϕ∗/∂x′ = 1), and therefore that

p2 ≈ p1

Ao

A . (2.21)

The corresponding prediction of p1 + p2 across the wavefront is shown by the dotted
curve in figure 3. The difference between the two approximations for p1 + p2 is
insignificant, and the overall pressure wave produced by the monopole and dipole
source terms is therefore represented well by

p = p1 + p2 ≈ ρoU
2

A(1−M2)

(
1 +
Ao

A
)∫ ∞

−∞
∂AT

∂x′
(x′ +U[t])

∂ϕ∗

∂x′
(x′, 0, zT)dx′. (2.22)

2.4. Contribution from the exit-flow vorticity

When boundary layer growth on the train and on the interior tunnel walls is ignored,
the vorticity source ∇·(Hω∧ v) in equation (2.5) is non-zero only in the shear layer of
the exit flow from the tunnel (see figure 2). Observations indicate that the exit-flow
shear layer rolls-up and forms a large vortex (Auvity & Bellenoue 1998) that will be
essentially axisymmetric when the train travels along the tunnel centreline. Just after
tunnel entry the initial stages of vortex formation may be modelled as in figure 2,
where in the simplest approximation the exit flow is assumed to be a uniform jet with
speed uE(t), with vorticity confined to a circular cylindrical vortex sheet of strength
uE convecting in the positive x-direction at speed 1

2
uE, so that

∇·(Hω ∧ v) =

{
(R/r) (∂/∂r)

(
1
2
u2

Eδ(r − R)
)
, 0 < x < s(t)

0, elsewhere,
(2.23)

where s(t) is the length of the jet outside the portal, indicated in figure 2(b), and

r =
√
y2 + z2 is radial distance from the tunnel axis.

The velocity uE(t) increases rapidly from zero to its final value of UAo/A during
the time ∼ L/U in which the nose enters the tunnel. The initial growth of the vortex
source strength will be modelled by setting uE(t) = UAT(Ut)/A for 0 < t < L/U.
The corresponding growth of the vortex-generated pressure wave depends on both
uE(t) and s(t); the latter may be approximated by s(t) =

∫ t
0
uE(τ)dτ, t > 0. Using

Green’s function (2.8), the pressure pω generated by the exit flow may then be cast in
the form

pω([t]) ≈ ρoU
2

2A
(AT(U[t])

A
)2 ∫ s([t])

0

2πR

(
∂ϕ∗

∂r′

)
r′=R

dx′. (2.24)

The integral is equal to the flux through the boundary of the jet (of length s) of the
hypothetical irrotational flow from the tunnel portal defined by the velocity potential
ϕ∗. It can therefore be evaluated explicitly in terms of the corresponding Stokes
stream function ψ∗(r′, x′) (Lamb 1932) which satisfies

1

r′
∂ψ∗

∂r′
=
∂ϕ∗

∂x′
,

1

r′
∂ψ∗

∂x′
= −∂ϕ

∗

∂r′
.

On the jet boundary (r′ = R) ψ∗(R, x′) decreases from A/2π at x′ = 0 to zero at
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x′ = +∞, and we find

pω([t]) ≈ ρoU
2

2

(AT(U[t])

A
)2(

1− 2πψ∗(R, s([t]))
A

)
. (2.25)

The same numerical calculation that must be performed to determine the potential
ϕ∗ also yields the Stokes stream function ψ∗, thereby permitting straightforward
evaluation of the right-hand side of (2.25). The magnitude of pω is of the same order
as the surface dipole pressure p2; its growth as the train enters the tunnel is shown in
figure 3 for the experimental conditions of § 2.2.

The broken line curve in figure 3 represents the predicted overall pressure signature
from all three sources:

p = p1 + p2 + pω. (2.26)

The gradual increase in pω as the exit flow extends downstream causes p to continue to
increase (but very slowly) after the establishment of the main compression wavefront.
The predicted growth rate is smaller than that of the measured pressure, presumably
because of the neglect of vorticity sources in the viscous boundary layers on the train
and tunnel walls, and within any regions of separated flow.

2.5. Comparison with Hara’s gas dynamic formula for ∆p

Hara (1961) has developed a comprehensive formula for the overall pressure rise
∆p across the compression wavefront in a cylindrical tunnel based on the general
equations of steady-flow gas dynamics. When the air flow is assumed to be homen-
tropic, and when the exit flow from the portal is modelled by a semi-infinite uniform
jet, bounded by a cylindrical vortex sheet (as in figure 2), he finds

∆p =
ρoU

2

(1−M2)

Ao

A

(
1− Ao

2A
)

[
1− 2

(1 +M)

Ao

A
(

1− Ao

2A
)] (2.27)

≈ ρoU
2

(1−M2)

Ao

A
(

1 +
3

2

Ao

A + · · ·
)
, (2.28)

where in (2.28) small terms of order MAo/A and (Ao/A)2 relative to unity have
been discarded. The solid curves in figure 4 represent the prediction (2.27) of ∆p (kPa)
plotted as a function of the blockageAo/A for train Mach numbers M varying from
0.1 to 0.4.

∆p can also be calculated to the same order as (2.28) from equations (2.22) and
(2.25). When U[t]/R � 1 equation (2.22) supplies (with ∂ϕ∗/∂x′ ≡ 1) the second-order
prediction

∆p1 + ∆p2 =
ρoU

2

(1−M2)

Ao

A
(

1 +
Ao

A
)
. (2.29)

In the same limit ψ∗(R, s([t]))→ 0, and equation (2.25) gives

∆pω =
ρoU

2

2

(Ao

A
)2

≈ ρoU
2

(1−M2)

1

2

(Ao

A
)2

, M2

(Ao

A
)
� 1. (2.30)

Hence, ∆p1 + ∆p2 + ∆pω coincides with the approximation (2.28) of Hara’s formula.
However, according to figure 3 the asymptotic contribution ∆pω to the overall pressure
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Figure 4. Comparison of the overall pressure rise ∆p predicted by the Hara formula (2.27) (——)
and the second-order, surface source approximation ∆p1 + ∆p2 given by (2.29) (• • •).

rise is not attained until well after the formation of the compression wavefront, at
times when predictions of Hara’s irrotational tunnel-flow theory are likely to be
contaminated by separation or by boundary layer growth on the train and tunnel
walls. In practice, therefore, the second-order approximation (2.29) probably gives a
better indication of the initial pressure rise across the wavefront. This is plotted as
the dotted curves in figure 4; predictions of the two theories agree for Ao/A < 0.22.

3. The Flared Portal
Turn attention now to the case of a train entering a flanged tunnel of semi-circular

cross-section that is flared over an axial distance ` from the tunnel entrance plane
(figure 5a). Measurements described in § 4 are made for this configuration using the
axisymmetric model of figure 5(b), to which the following discussion is confined.

3.1. The function ϕ∗

Let the tunnel cross-sectional area S(x) decrease smoothly from AE ≡ πR2
E at x = 0

to the uniform, constant value A = πR2 for x 6 −`. Changes in S(x) are assumed
to be sufficiently slow that the velocity potential ϕ∗ satisfies the following simplified
form of Laplace’s equation within the tunnel (Howe 1999b):

1

S(x)

∂

∂x

(
S(x)

∂ϕ∗

∂x

)
= 0, x < 0, (3.1)

with solution

ϕ∗(x) =A
∫ x

0

dξ

S(ξ)
+ C, x < 0, (3.2)

where C is a constant.
If the flange is regarded as infinite, the behaviour of ϕ∗(x) outside the tunnel

(x > 0) is approximately the same as the potential of incompressible flow produced
by a ‘piston’ of area AE in a plane wall at x = 0, moving with normal velocity(
∂ϕ∗/∂x

)
x=0

=A/AE. When x lies on the axis of symmetry (the x-axis), the condition
that ϕ∗(x)→ 0 as x→ +∞ then yields (for details see Howe 1999b)

ϕ∗(x) = −ARAE

[(AE

A +
x2

R2

)1/2

− x

R

]
, x > 0. (3.3)
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Figure 5. (a) Train entering a tunnel with a flared portal of length `; (b) axisymmetric flared
portal with an infinite flange.

Equating expressions (3.2) and (3.3) at x = 0 we find C = −R√A/AE, and the
flared portal ‘end correction’ is then given by

`′ = R

√ A
AE

+

∫ 0

−∞

( A
S(ξ)

− 1

)
dξ. (3.4)

3.2. Optimal flaring

The flaring is ‘optimal’ when the pressure increases linearly with distance across the
compression wavefront. Howe (1999b) derived the shape of the tunnel area profile
S(x) necessary to achieve this by considering the linear-theory compression wave p1

produced by a monopole point source entering the tunnel. Equation (2.13) reveals
that this is equivalent to setting

∂AT

∂x′
(x′ +U[t]) =Aoδ(x′ +U[t]), (3.5)

i.e. to replacing the streamlined train nose profile by a flat-faced or ‘snub-nosed’ train.
However, because the second-order approximation (2.22) for p1 + p2 differs from

the linear-theory pressure (2.13) merely by a multiplicative factor of (1 +Ao/A),
the linear-theory optimal tunnel profile remains optimal at second order. Indeed,
substituting from (3.2) and (3.5) into (2.22), we find that

p ≈ p1 + p2 =
ρoU

2

(1−M2)

(
1 +
Ao

A
) Ao

S(−U[t])
for U[t]/R > 0, (3.6)

after the point source has crossed the entrance plane into the flared section of the
tunnel, where most of the pressure rise occurs. During this time S(−U[t]) decreases
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from AE to A, and the pressure rises from

ρoU
2

(1−M2)

(
1 +
Ao

A
) Ao

AE

at the instant at which the front of the train (the source) enters the tunnel, to its final
value of

ρoU
2

(1−M2)

(
1 +
Ao

A
)Ao

A
when the front enters the uniform section of the tunnel. This increase will be linear
when 1/S (−U[t]) is a linearly increasing function of the retarded time, that is, when
the flared section of the tunnel is defined by

S(x)

A = 1

/[ A
AE

− x

`

(
1− AAE

)]
, −` < x < 0. (3.7)

It remains to specify the cross-sectional area S(0) = AE in the tunnel entrance
plane. When the length ` of the flared section is prescribed, the value of AE must be
adjusted to ensure that the pressure varies smoothly at U[t]/R = 0, when the train
(source) enters the tunnel. This is done by requiring the values of ∂2ϕ∗(x, 0, 0)/∂x2

defined respectively by the approximations (3.2) and (3.3) to be equal at x = 0, which
implies that ( A

AE

)3/2

=
R

`

(
1− AAE

)
.

Provided that the length ` of the flared section exceeds 2R/3
√

3 ≈ 0.385R, we then
find

AE

A =

(
`

2R

)2/3
[(

1 +

√
1−

(
2R

3
√

3`

)2
)1/3

+

(
1−

√
1−

(
2R

3
√

3`

)2
)1/3]2

. (3.8)

This gives a minimum value of AE/A = 4
3

at `/R = 0.385; when ` � R, AE/A ≈
(`/R)2/3. In our experiments `/R = 10, so that the optimal area ratio AE/A = 5.35

and RE/R = 2.31. The local tunnel radius is given by r(x) = R
√
S(x)/A, and the

flared sections shown in figure 5 are the optimal profile calculated from this formula
and equations (3.7), (3.8) when `/R = 10.

3.3. Comparison with measurements

Numerical results discussed by Howe (1999b) indicated that the linear-theory pressure
p1 continues to increase linearly across the wavefront when the ‘snub’-nosed train is
replaced by one of more realistic profile. This is because the linear-theory monopole
distribution (2.6) can be replaced to a good approximation by a point source at a
suitable ‘centroid’ within the nose of the train. In figure 6 the linear-theory pressure p1,
determined by (2.13), (3.1) and (3.3), and the second-order approximation p1 +p2 given
by (2.22), (3.1) and (3.3), are compared with measurements for the circular cylindrical
tunnel of § 2.2 fitted with a flanged portal that is optimally flared in accordance with
equations (3.7), (3.8) with

R = 5 cm, ` = 10R.

The open triangles are the pressure measured at distance 1.55 m from the portal
entrance plane produced by an axisymmetric train of total length 91.5 cm. The train
is the same as that described in § 2.2, both ends of which have ellipsoidal profiles
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Figure 6. Compression wave pressure profile (in kPa) generated by a train with ellipsoidal nose
and tail profiles defined by (2.14) entering at U = 296 k.p.h. a circular cylindrical tunnel of radius
R = 5 cm with an optimally flared portal of length ` = 50 cm: 4 4 4, pressure measured at a
distance 1.55 m from the tunnel entrance plane; - - - -, linear theory pressure predicted by (2.13),
(3.2), (3.3); ——, second-order approximation p1 + p2 given by (2.22), (3.2), (3.3).
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Figure 7. Compression wave ‘pressure gradient’ dp/dt (in kPa s−1) generated by a train with
ellipsoidal nose and tail profiles defined by (2.14) entering at U = 296 k.p.h. a circular cylindrical
tunnel of radius R = 5 cm with an optimally flared portal of length ` = 50 cm: 4 4 4, pressure
gradient measured at a distance 1.55 m from the tunnel entrance plane; - - - -, linear theory
prediction of (2.13), (3.2), (3.3); ——, second-order approximation dp1/dt + dp2/dt determined by
(2.22), (3.2), (3.3).

defined as in (2.14) with semi-axes h, L given by (2.15), the blockage Ao/A = 0.2,
and the train speed U = 296 k.p.h.

The nose of the train enters the flared section of the tunnel at U[t]/R = 0, following
which the pressure rises linearly until just after the nose arrives at the beginning of the
uniform section of the tunnel, at U[t]/R = 10, so that the compression wave thickness
∼ 10R/M = 207 cm (representing a fivefold increase over the wave thickness in § 2
for the flanged, circular cylindrical portal). The second-order approximation (2.22)
gives an excellent rendering of this experimental observation. The subsequent sharp
decrease in the pressure is produced by the expansion wave generated when the tail
of the train begins to enter the flared section at U[t]/R ≈ 16. Because of the large
expansion in cross-section of the tunnel at the portal, the contribution pω to the
pressure rise from the exit flow vorticity is reduced by a factor (A/AE)2 ∼ 0.035, and
may be ignored.

Measured and predicted values of the temporal ‘pressure gradient’ dp/dt are
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compared in figure 7. The value of dp/dt (augmented by nonlinear steepening)
governs the strength of the micro-pressure wave radiated from the far end of the
tunnel when the compression wave arrives. The initial maximum value of about
310 kPa s−1 shown in figure 7 is about 25% of the corresponding maximum for the
pressure profile of figure 3 for the unflared circular cylindrical tunnel. The abrupt
decrease in the predicted pressure gradient at U[t]/R = 10 occurs as the nose of the
train enters the uniform section of the tunnel. The measured decrease of dp/dt at
these times is much smoother, presumably because various vortex sources discussed
above are ignored in the theory; in particular these could well include a large vortex-
ring-like structure between the train and tunnel wall in the flared section, although
no experimental data are currently available to support this conjecture.

Measurements of the compression wave and pressure gradient for an unflanged
entrance with the same flared portal (that, strictly speaking, is ‘optimal’ only in the
presence of a flange) show a similar linear growth in pressure across the compression
wavefront occurring during the passage of the nose across the flared section, and an
overall minimum value of dp/dt that agrees with the ‘flanged’ theory based on the
approximations (3.7), (3.8). According to equation (3.6), the flange only affects the
growth of the compression wave at times prior to the entrance of the ‘centroid’ of
the nose into the flared section, and in the optimal case it has a negligible influence on
the dynamics of the compression wave formation, so that predictions for the optimal
portal are valid for both the flanged and unflanged tunnels.

4. Description of the model scale experiments
4.1. Experimental apparatus

The Reynolds number of the dominant air flow induced by a high-speed train is
sufficiently large that the aerodynamics of a train entering a tunnel may be regarded
as inviscid. To a good approximation, therefore, the compression wave characteristics
scale on Mach number and blockage, so that measurements at model scale will
provide a faithful representation of full scale results provided the Mach number and
relative geometrical sizes of the tunnel and train are the same (Ozawa et al. 1976;
Ozawa & Maeda 1988). In our experiments the uniform section of the tunnel has a
circular cross-section of radius R = 5 cm. The areas of tunnels on the Japanese high-
speed Shinkansen network are typically about 63 m2. When this is doubled to take
account of the image tunnel in the ground plane, the equivalent circular cylindrical
tunnel has radius 6.35 m, which means that the experiments reported here are 1/127
of full scale.

The experiments were performed at the Railway Technical Research Institute in
Tokyo using the apparatus illustrated schematically in figure 8. The uniform section
of the tunnel consists of a 10 m long horizontal, circular cylindrical pipe made of
vinyl chloride, with inner and outer diameters respectively equal to 10 cm and 11.4 cm.
Axisymmetric model trains are projected at high speed into the tunnel, guided by
a 5 mm diameter taut steel wire extending along the tunnel axis. Both flanged and
unflanged tunnel entrance portals are used. The outer contour of the flange is a square
of side 1 m, which is larger by a factor of 10 than the inner diameter of the uniform
section of the tunnel. The tunnel entrance can be fitted with a (flanged or unflanged)
flared portal, which increases the overall tunnel length by 55 cm. The photograph in
figure 9 shows the experimental arrangement for an unflanged, flared portal.

The overall length of the experimental apparatus shown in figure 8 is about 18 m.



C
o
m

p
ressio

n
w

a
ve

g
en

era
ted

by
a

tra
in

en
terin

g
a

tu
n
n
el

1
2
7

Train catcher

Steel wire (diameter 5 mm)

Personal
computer

A/D
converter

DC
Amplifier

DC
Amplifier

1 m8 m 0.5 m 1 m 2.3 m

D

E

P

Photo-electric detector

Infrared beam emitter

Pressure transducer

D U

Train

E

Train launcher

Flange (1 m ×1 m)

Flare

Tunnel (inner diameter 100 mm)

1.05 m (flared portal)
1 m (unflared portal)

P P

Figure 8. Schematic of the experimental apparatus.
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Figure 9. Unflanged flared portal and cylindrical tunnel with wire-guided axisymmetric model
train.

The train is launched by a two-stage friction drive consisting of two pairs of vertically
aligned wheels. It is accelerated to about 200 k.p.h. by the first stage and then to a
maximum speed of about 320 k.p.h. by the second, the final speed being controlled
by varying the rates of rotation of the wheels. A 1 m long ‘open’ section between the
launcher and the flared portal is large enough to ensure that pressure waves generated
during the rapid acceleration of the train are negligible at the tunnel entrance. On
emerging from the far end of the tunnel, the train is brought to rest by a ‘catcher’ that
slides along the steel wire, the motion being damped by a cloth and sponge shock-
absorber fixed to the wall supporting the end of the wire. The catcher contains an air
damper and fabric material to absorb the kinetic energy of the rapidly decelerating
train, which is recovered without damage and can be used repeatedly in further tests.

Pressure measurements are made within the tunnel using two wall-mounted trans-
ducers respectively at 1 and 2 m from the start of the uniform, circular cylindrical
tunnel. The pressures are recorded until the instant at which the expansion wave
produced by reflection of the compression wave at the far tunnel exit is received by
the second transducer. This occurs about 45 ms after the nose of the train enters the
flared portal, which is well in excess of the 10 ms required for recording the wavefront
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of the compression wave generated by a train entering the flared portal at about
300 k.p.h.

The dimensions of the ‘optimally’ flared portal are given in figure 10(a). The portal
is fabricated from 5 mm thick aluminium alloy; a 10 cm collar at its narrow end
permits it to mate smoothly with the uniform, circular cylindrical section of the
tunnel. When fitted to the cylinder, the portal has an overall length of 55 cm, and a
‘working length’ of ` = 50 cm measured from the tunnel inlet plane, within which the
cross-sectional area S(x) varies according to equations (3.7), (3.8).

The model train (figure 10b) consists of an axisymmetric, cigar-shaped body of
length 91.5 cm with rounded ellipsoidal ends, defined as in (2.14) with L = 11.18 cm
and radius h = 2.235 cm; it is made from a nylon plastic material of total mass 660 g.
The steel guide-wire passes axisymmetrically through a cylindrical hole in the model of
diameter 5.5 mm. For these dimensions the blockageAo/A = 0.2 (or 0.198 if account
is taken of the cross-sectional area of the guide-wire), which is typical of the larger
values arising in practice, where for high-speed operations (U > 200 k.p.h.) Ao/A is
usually restricted to the range 0.12 to 0.22.

4.2. Measurement of the compression wave

An infrared beam directed across the open section in front of the tunnel entrance is
used to detect the entrance of the train nose into the tunnel. Pressure measurements
are automatically initiated when the beam is cut. The total time for which the beam
is cut can also be used to estimate the speed U of the train, but this method is subject
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to large errors because of possible lateral vibrations of the guide wire, and a more
accurate procedure described below in § 4.3 was therefore used.

The pressure within the tunnel was measured by two Toyoda Machine Works
PD104K transducers mounted in the tunnel wall at distances of 1.55 m and 2.55 m
from the entrance plane of the flared portal, and at distances of 1 m and 2 m from the
entrance plane in the case of the uniform, circular cylindrical tunnel. Data from the
transducers are passed through a Toyoda Machine Works AA6210 amplifier, digitized
using a 12-bit analogue-to-digital converter with a sampling rate of 25 kHz per
channel, and stored in a personal computer. The pressure gradient (dp/dt) is then
calculated using a simple central difference scheme after high-frequency components
(> 1 kHz) of the measured pressure have been removed using a fast Fourier transform
algorithm.

4.3. Measurement of U

The pressure gradient dp/dt varies approximately as the third power of the train speed,
so that a proper comparison of theory and experiment requires careful measurement
of U. High-speed photography indicates that lateral vibrations of the model train on
the guide wire often occur at amplitudes as large as 5 mm as the train enters the tunnel.
Because of the rounded train nose and tail profiles, it is likely that measurements
of U based on observations of the time interval during which the infrared beam is
blocked by the train can be as large as 2.5%, giving a possible error of about 8 k.p.h.
when U ∼ 300 k.p.h.

We therefore adopted a measurement technique based on observations of the
hydrodynamic field of the tail of the train within the tunnel. The air motion relative
to the tail is essentially steady during the time interval following its entry into the
uniform section of the tunnel until the first arrival at the tail of waves reflected
from the far end of the tunnel. For the present series of experiments this interval
includes the times during which the tail passes the two pressure transducers, and
measurements of the time lapse between respective observations by the transducers
of identical pressure signatures can therefore be used to determine U. Of course, a
rarefaction wave is generated when the tail enters the tunnel, and this is partially
reflected at the front of the train and could in principle disturb the hydrodynamic flow
at the tail. However, the blockage Ao/A = 0.2 is small enough that the amplitude of
the reflected wave turns out to be negligible. Similarly, flow separation near the tail of
the present model train is sufficiently small scale to produce no significant unsteady
pressures. Thus, pressure measurements at the two locations yield no distinguishable
differences between the corresponding pressure signatures of the tail. The accuracy of
this procedure is further improved by comparing the signatures of dp/dt rather than
p, in which case the measurement error is estimated to be no more than about 0.5%
(1.5 k.p.h.) when U ∼ 300 k.p.h.

Lateral vibrations of the train on the steel wire are a possible source of unsteadiness
that can also affect the accuracy of this measurement. The natural frequency of these
vibrations was estimated by hitting the steel wire when the train is stationary, and
turns out to be about 11 Hz. When U ∼ 300 k.p.h., the train travels about 7.5 m
during one period when the lateral motion is, say, 5 mm. The lateral motion of the
train over the 1 m distance between the pressure transducers is therefore less than
1 mm, and is hardly likely to modify significantly the near-field pressure fluctuations.
Similarly, by using a system of four pressure transducers to measure the train speed
at different positions within the tunnel (in the range 250–300 k.p.h.), it was concluded
that uncertainties in the measured speed attributable to a gradual reduction in train
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speed over a distance of 1 m (produced by form drag and frictional resistance of the
air and wire) are likely to influence the measured value of U by less than about 0.5%.
Thus, the overall error in the velocity measurement is estimated to be no more than
about 1% (or 3 k.p.h. at U ∼ 300 k.p.h.).

5. Conclusion
The structure of the compression wave generated by a high-speed train entering

a tunnel depends principally on portal geometry, the blockage Ao/A and the train
speed U. The wave amplitude is given approximately by

ρoU
2

1−M2

Ao

A
(

1 +
Ao

A
)
, M =

U

co

,

and the initial thickness of the compression wave decreases with increasing train
Mach number like 1/M. In a long tunnel nonlinear steepening of the wavefront can
ultimately produce rapidly varying pressure transients whose magnitude can exceed
2–3% of the atmospheric pressure. The pulsatile ‘micro-pressure wave’ radiated from
the far end of the tunnel when the compression wave arrives is then comparable in
strength to the ‘sonic boom’ produced by a supersonic aircraft; it causes windows to
rattle and is generally an environmental nuisance. The monopole source represent-
ing the displacement of air by the advancing train is responsible for the principal
characteristics of the compression wave, but we have shown that it is also neces-
sary to take account of second-order, dipole sources in order to make theoretical
predictions fully compatible with experiment. The most important dipole source is
produced by the pressure drag on the nose of the train. A second contribution of
comparable magnitude is generated by ‘vortex sound’ dipoles in the back-flow of air
displaced by the entering train out of the portal. However, this is usually important
only after the compression wave is formed, and its effect may in practice be masked
by similar contributions from regions of separated flow on the train and tunnel walls
that become progressively more significant after entry of the nose into the tunnel.

The harmful effects of nonlinear steepening can be mitigated by increasing the initial
thickness of the compression wave. A portal that is ‘optimally flared’ in accordance
with equations (3.7) and (3.8) over a distance ` has been predicted theoretically to
cause the pressure to increase linearly across the wavefront over a distance ∼ `/M.
This conclusion is borne out by our experiments using an optimally profiled portal
and an axisymmetric model ‘train’ travelling at U ∼ 300 k.p.h. (M ≈ 0.25) at the
relatively large blockage Ao/A = 0.2. These experiments confirm that linear growth
of the compression wave occurs during the time in which the front of the train crosses
the flared section of the tunnel, and that for a given length ` of the flared section,
the overall value of the pressure gradient dp/dt is then a minimum. Such a portal
therefore provides a potentially effective means of suppressing the micro-pressure
wave radiation from the far end of the tunnel.
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